23.6 Means differences: Sampling distribution

The study concerns the mean energy saving (the mean difference). Every sample of n=10 houses is likely to comprise different houses, and hence different before and after energy consumptions will be recorded, and hence different energy savings will be recorded. As a result, the sample mean energy differences will vary from sample to sample. That is, the mean differences have a sampling distribution, and a standard error.

Since the differences are like a single sample of data (Chap. 22), the sampling distribution for the differences will have a similar sampling distribution to the mean of a single sample x¯ (provided the conditions are met; Sect. 23.9).

Definition 23.2 (Sampling distribution of a sample mean difference) The sampling distribution of a sample mean difference is described by:

  • an approximate normal distribution;
  • centred around μd (the population mean difference);
  • with a standard deviation of s.e.(d¯)=sdnd,
when certain conditions are met, where n is the size of the sample, and sd is the standard deviation of the individual differences in the sample.

For the home insulation data, the variation in the sample mean differences d¯ can be described by

  • approximate normal distribution;
  • centred around μd;
  • with a standard deviation of s.e.(d¯)=1.01565510=0.3211784, called the standard error of the differences.

Notice that many decimal places are used in the working here; results will be rounded when reported.